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by 
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Abstract 
 Numerical efficiency comparisons of a four-node finite element model (FEM), a 

mass-spring lattice model (MSLM), and a mass-spring-dashpot lattice model (MSDLM) are 
investigated. Specifically, the error in the ultrasonic phase speed with variations in Poisson’s 
ratio and angle of incidence is evaluated in each model of an isotropic elastic solid. With regard 
to phase speed, materials with constant N grid spaces per P-wavelength having Poisson’s ratios 
between 0.0 and 0.25 are modeled more accurately with the MSLM. Materials with Poisson’s 
ratios between 0.35 and 0.5 and N grid spaces per P-wavelength are more accurately modeled 
with the FEM. Materials whose Poisson’s ratio is between 0.25 and 0.35 are modeled equally 
accurately. With regard to phase speed, viscoelastic materials modeled with FEM and MSDLM 
show good agreement with known analytical solutions. The computational expense of all three 
models is also examined. The number of floating point operations (FLOPS) needed to achieve a 
specified phase speed accuracy is calculated for each different model. While the FEM and 
MSLM have nearly the same computation cost, the MSDLM is 5 times more costly than either 
the FEM or MSLM.  
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Introduction 
Nondestructive evaluation (NDE) techniques have been used for decades to characterize 

materials and inspect products. For example, the U.S. Navy has developed a variety of NDE 

techniques and systems for identifying defects in ship structures. These techniques and systems 

are vital for finding defects before they impact the safety and mission readiness of a ship [1]. 

Most NDE systems contain an energy source used to probe an object, a receiver or detector that 

measures how the energy has been changed by the object, and components and analyses to 

record, process, and interpret the measurement data [2]. Many of these systems use ultrasonic 

wave energy. Some advantages of ultrasonic testing (UT) are that small surface and subsurface 

discontinuities can be detected. Ideally, the approximate size and orientation of the flaw can also 

be determined [3]. Prediction and simulation of ultrasonic wave propagation provide valuable 

analytical techniques in the interpretation of UT data.  

Two approaches to numerical simulation of wave propagation are with a finite element 

model (FEM) and a mass-spring-dashpot lattice model (MSDLM). Finite element procedures are 

now a critical part of engineering analysis and design [4]. The versatility and ease of use of 

commercially available finite element programs have contributed to their popularity. In recent 

years, new research in mass-spring lattice models has taken place. Yim [5] discusses the 

advantages of a mass-spring lattice model and the U.S. Navy has already begun research in 

numerical simulation of thick, layered composites with mass-spring-dashpot lattice models [6]. 

In this thesis, FEM and MSDLM are compared with regard to phase speed accuracy and 

computational cost. 
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Problem Statement 
 Choosing an appropriate analysis method can be difficult without knowing which model 

will most accurately represent a particular material or phenomenon.  

Numerical anisotropy exists in each model and may affect computational results, 

especially with regard to propagation direction [7]. It is well known that one method of reducing 

error is by reducing mesh size. This does have the added effect of increasing computational cost. 

This thesis proposes that by choosing carefully the model used, error and computational cost 

may be reduced. 

Introduction to Numerical Models 
 The mass-spring-dashpot lattice model (MSDLM) in Fig.1 [8] is a modified version of 

the mass-spring lattice model (MSLM) of Yim and Sohn [9] and Yim and Choi [10]. The 

MSDLM is a heuristic, physical model where the inertia and viscoelasticity of a solid are 

modeled as particles interconnected with springs and dashpots.   

 The spring constants and dashpot coefficients are derived from the exact partial 

differential equations governing a two-dimensional standard linear solid [8]. The particle 

velocities and displacements, as well as volumetric forces through each element are numerically 

integrated with a fourth-order Runge-Kutta algorithm [11]. The MSDLM has been used to study 

wave propagation phenomena in materials having attenuation and has been shown to agree with 

analytical solutions in both steady-state and transient analyses [8]. 
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Figure 1.  Schematic of an MSDLM at an interior plane-strain particle located at position (i, j) [8]. 
 
To ensure stability and convergence of the Runge-Kutta algorithm in the MSDLM, the Courant 

number C must satisfy 

 30.1max, ≤
∆

≡
h

tc
C P  (1)  

where cmax,P is the maximum P phase speed, h is the grid space, and t∆  is the numerical time 

step [8]. Phase speed is the speed at which the crest of a single-frequency wave travels. 

 The finite element method is an approach for solving partial differential equations (PDEs) 

and integral equations [12]. Finite element modeling of a solution involves the mesh 

discretization of a continuous domain into a set of discrete sub-domains and a finite number of 

points called nodes. In Fig. 2, elements comprising the entire domain are connected at common 

nodes and collectively approximate the shape of the initial domain. The elements 
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are then approximated by a discrete set of piecewise continuous functions (polynomials) defined 

using the nodal values of the continuous solution. The solution to the piecewise continuous 

functions approximates the solution to the initial PDE. Finite difference methods are different 

from finite element methods in that the differential operators are approximated rather than 

represented by piecewise polynomials.  

Figure 2. Schematic of a four-node FEM at an interior plane-strain node located at position (i, j). 
 
 In structural mechanics, finite element methods are often based on an energy principle 

such as the principle of virtual work. Polynomial shape functions are used to relate the 

displacement at any particular point to the displacements at the FEM nodes. A model of a 

material such as a standard linear solid can be generated using the displacements at the nodes, 

h h

i,j

i+1,j+1 i,j+1 i-1,j-1 

i+1,j i-1,j 

i+1,j-1 i,j-1 i-1,j-1 

h 

 

h

x, u 

y, v 
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material properties, and constitutive relationships. FEM have been used to study wave 

propagation and attenuation and have been shown to agree with analytical solutions. 

 To ensure accuracy and stability in a wave propagation finite element model, certain 

criteria must be met.  The length, Le,of a finite element must be 

 tcLe ∆= max  (2) 

where c is the maximum wave speed and t∆ is the corresponding timestep. For this analysis, an 

explicit integration method is used which means the Courant-Friedrichs-Lewy (CFL) condition 

must be met in order to obtain accurate results. Simply stated, the maximum allowable Courant 

number C that an explicit time-integrator may use is 1.  

 
eL

tc
C

∆
≡ max  (3) 

where Le corresponds to the length of the finite element h. While it is well known that C greater 

than 1 causes a model to become unstable, a finite element model also becomes inaccurate as C 

decreases to values less than 1 [12].  

 Fig.3 is a mass-spring-lattice model (MSLM). It is similar to the MSDLM in arrangement 

of nodes but differs from the MSDLM in that it lacks dashpots. It is useful in modeling wave 

propagation phenomena in elastic materials and has been shown to agree with analytical 

solutions in both steady-state and transient analyses [5,9,10]. 
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Figure 3. Schematic of MSLM at an interior plane-strain particle located at position (i, j) [8]. 

Investigation into Accuracy of an Interior Point 
 In this example, the material is elastic and does not attenuate, so the mass-spring-lattice 

model (MSLM) is used. The phase speed accuracy can be investigated using the MSLM and a 

four-node FEM with an arbitrarily oriented plane wave propagating through an unbounded 

elastic media.  

 The equations of motion in a plane strain isotropic medium having mass proportional 

damping expressed in Cartesian coordinates, are 
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where u is the displacement in the x-direction, v is the displacement in the y-direction, ρ is the 

density, τ is a time constant, and λ and µ are Lamé elastic constants. 
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 The four node finite element model discretization of eqn. (4) and eqn.  (5) give the 

following equations written in component form at a particle position (i,j) at time t.[Appendix A] 
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where ∆t is the numerical time step and h is the grid spacing. (A similar analysis for the MSLM 

can be found in reference [8].) For stability, the Courant number C must satisfy 

 1≤∆
≡

h
tcC P  (8) 

where cP is the longitudinal wave speed given by  

 
ρ
µλ 2+

=Pc  (9) 

The shear wave speed cS is given by 

 
ρ
µ

=Sc  (10) 
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Analysis of accuracy 
 Taking the two dimensional discrete Fourier transform of eqn (3) and (4) and forming the 

amplification equation yields [8] 

 uGu ttt =∆+  (11) 

where 

 [ ]VUVU tttttt ∆−∆−= tu  (12) 

 [ ]VUVU tttttt ∆+∆+∆+ =utt  (13) 
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In eqns. (12) through (17) 

 θcoskkx =  (21)  

 θsinkk y =  (22) 

The four eigenvectors of the amplification matrix G are ξ+P, ξ+S, ξ-P, and ξ-S, where the subscripts 

+ or – refer to the positive and negative phases. 

The positive phase change in one time step is found from the exact dispersion relation as 

 tkct Pexact ∆=∆ω  (23) 

 ∆=∆ Sexact kctω  (24) 

and the positive phase change from the numerical approximation is [13] 

 )}Im{ln( Pnumerical t +=∆ ξω  (25) 

 )}Im{ln( Snumerical t +=∆ ξω   (26) 

where ξP, and ξS are the eigenvectors that correspond to the pressure or P- and shear or S-waves. 
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 The numerical phase change can be written in non-dimensional form as 

 },,,,{ ωτθω khvCfcntnumerical =∆  (27) 

where v is the Poisson’s ratio, ωτ is a non-dimensional frequency, k is the wavenumber, and h is 

the grid spacing. (A similar analysis for the MSLM can be found in reference [8].) 

Percent phase error in the numerical phase change relative to the exact phase change is defined  

 %100×
∆

∆−∆
t

tt

exact

exactnumerical

ω
ωω

 (28) 

Multiplying eqn. (25) by 

 
k
k

/1
/1  (29) 

yields 

 %100×
−

=
exact

exactnumerical
c c

cc
ε  (30) 

which is simply the percent error in wave speed. 

 Consider the exact and numerical dispersion relation for an elastic material with v=0.30 

and a plane wave propagating along the x-axis (θ=0) as shown in Fig. 4. For this example and for 

the remainder of this paper, C=1 will be used. As seen in the figure, the phase error of P-waves 

of both FEM and MSLM rapidly decrease despite the small number of grid spaces per 

wavelength. This phenomena is due to the fact that the FEM and the MSLM solutions are equal 

to the exact solution for this Poisson’s ratio v=0.30 and angle of orientation θ =0°. The S-wave 

propagation of the FEM and MSLM differ as the normalized wavelength increases. It is 

interesting to note that the S-wave phase speed error is the same for both models at Poisson’s 

ratio v =0.3 and angle of orientation θ =0°. 

 Fig. 5 shows the case where Poisson’s ratio v =0.3 and angle of orientation θ =45°.   
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The only difference between Fig. 4 and Fig. 5 is the angle of orientation. The FEM P-wave error 

is now significantly different due to the change in θ. The P-wave solution changed from the 

exact solution to a solution that has an error inversely proportional to the number of grid spaces. 

In the FEM, the P- and S- wave phase speed errors are nearly equal but the errors in the P- and S-

waves for the MSLM are different by a factor of two. The unusual behavior of the MSLM S-

wave is disregarded due to the small number of grid spaces per wavelength. At two grid spaces 

per wavelength, both models are extremely inaccurate. 

 While it is well known that the phase errors in most numerical models vary as θ varies, it 

is interesting to note that the phase error in each model varies as v varies as well. In Fig. 6, θ = 

45° and v = 0.2. The phase error of the MSLM is clearly less than the phase error of the FEM. 

The difference in error between the FEM and the MSLM equates to roughly one less grid 

spacing per wavelength. 

 In Fig. 7, θ = 45° and v =0.4. The phase speed error for the P-wave speed in the FEM is 

slightly larger than the phase speed error in the MSLM. However, the S-wave speed error is 

nearly one order of magnitude smaller in the FEM than in the MSLM.  
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(a) 

 

 
(b) 

Figure 4. Percent error in phase speed as a function of grid spaces per wavelength, where Poisson’s ratio v =0.3 and 
angle of orientation θ =0° for (a) FEM and (b) MSLM. 
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Figure 5. Percent error in phase speed as a function of grid spaces per wavelength, where the Poisson’s ratio v =0.3 
and angle of orientation θ =45°. 
 

 

Figure 6. Percent error in phase speed as a function of grid spaces per wavelength, where Poisson’s ratio v =0.2 and 
angle of orientation θ =45°. 
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.  

Figure 7. Percent error in phase speed as a function of grid spaces per wavelength, where Poisson’s ratio v =0.4 and 
angle of orientation θ =45°. 
 
  

 Typically, in engineering applications an acceptable error is known and grid spaces per 

wavelength N are determined and given by 

 
hk

N
p

P
π2

=   (31)  

 
hk

N
S

S
π2

=   (32) 

where NP and NS are the number of grid spaces per P and S wavelengths respectively, kP and kS 

are the respective wavenumbers, and h is the grid space.  

 Figure 9 is the number of grid spaces required by the MSLM to achieve 1% error or less 

in phase speed as functions of Poisson’s ratio and angle of incidence. Fig.10 is the same plot for 

the FEM. Note that for both the FEM and MSLM, NP and NS are symmetric about θ = 45°, which 

follows from the symmetry of the models for interior particles as shown in Fig. 2 and Fig. 3. In 
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both models, the phase error of P-waves decays to zero as θ →0°. Holding θ =0° or 90°, NS is a 

monotonically increasing function for both FEM and MSLM 

 There are differences in the models. In the MSLM, NP decreases as ν increases while 

holding θ = 45°. In the FEM, holding θ =45° and increasing ν increases NP slightly. Holding 

θ=45°, NS for MSLM has a minimum at ν =0.3 before increasing dramatically. The FEM has a 

minimum NS at ν = 0.43 before increasing.  The errors in S-wave speed for the case when θ=45° 

and v varies from 0.0 to 0.5 is shown in Fig. 8.  
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Figure 10. Number of grid spaces required for 1% phase speed error for S-waves as v varies from 0.0 to 0.5 angle of 
incidence θ =45°. 
 

Investigation into Accuracy of a Point at a Traction Free Surface 
 Wave propagation problems involving a surface excitation and a surface response in an 

elastic half-space have become known as Lamb’s problems due to the efforts of Horace Lamb in 

1904. Lamb’s work is based on Rayleigh’s discovery of surface waves in 1887. Lamb discovered 

Rayleigh waves are a direct function of the source kinematics and that P- and S-waves are a 

function of the time derivative of the source function [14]. An analytical solution exists for these 

types of problems. (Refer to [8] or [15] for a detailed discussion of the analytical solution.) 

 Previously in this paper, FEM and MSLM were compared to each other for phase 

 speed accuracy at an interior point. FEM and MSLM displacement accuracy will be compared to 

an analytical solution for a point on a traction-free boundary.  

Two dimensional schematics of the FEM and the MSLM discretization of a plane strain 
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elastic solid at a traction free boundary are shown in Fig. 11 and Fig. 12. The corresponding 

equations of motion in indicial notation for the FEM are 
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where ∆t is the numerical time step, and ui,j and vi,j are horizontal and vertical displacements  

respectively. (A detailed analysis of the corresponding equations of motion of the MSLM can be  

found in reference [8].) 
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Figure 11. Schematic of an FEM at surface plane-strain particle located at position (i, j). 

 

Figure 12. Schematic of an MSLM at surface plane-strain particle located at position (i, j) [8]. 
 

Input Signal Shape 
 The surface excitations in the two-dimensional numerical simulations are point loads. 

The frequency content of the time-varying point load is dictated by the Gaussian-modulated 

cosinusoid depicted in Fig. 13. The numerical function is 
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Figure 13. Gaussian-modulated cosinusoidal input. 
 

where pu  is the peak displacement, σf  is the standard deviation cyclic frequency, and cf  is the  

center cyclic  frequency. The maximum effective frequency of the input signal is cf +3 σf . 

Maximum effective frequency relates to the minimum propagating wavelength. This minimum 

wavelength is used in accuracy calculations. 

 Figure 14 shows the surface displacement of a particle 3.5 P-wavelengths from the point 

source in the MSLM. Figure 15 shows the surface displacement of a particle 3.5 P-wavelengths 

from the point source in the FEM. Twenty grid spaces per minimum wavelength are used in each 

model. This grid spacing is selected to ensure less than 1% error in phase speed for an interior 

particle for both the FEM and the MSLM.  
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 Accuracy  
 Both the FEM and MSLM reproduce Lamb’s solution for surface displacements of an 

elastic material due to surface excitation. As shown in Fig. 14 and Fig. 15, the difference 

between the analytical solution and the numerical solution is small. In the FEM and MSLM, the 

phase error in both the horizontal and vertical directions is less than 2%. A detailed summary of 

Lamb’s solution appears in Appendix C. 

 

 

 

Figure 14. Horizontal and vertical displacements of the surface particle located 3.5 P-wavelengths from a point 
source in the MSLM. 
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Figure 15. Horizontal and vertical displacements of the surface particle located 3.5 P-wavelengths from a point 
source in the FEM mode. 
 

Attenuation analysis of FEM and MSDLM 
 Attenuation is a decrease in the amplitude of a wave due to the material’s absorption of 

energy. Damping is the tendency of a material or system to reduce the amplitude of oscillations. 

The attenuation of a signal is the result of damping in a material through which a signal is 

traveling. In lumped parameter models damping is modeled by an element retarding force is 

proportional to the velocity across it. As shown in Fig. 1, the MSDLM includes dashpots, which 

act as dampers.  

 The FEM does not model damping in the above manner. A damping matrix cannot be 

constructed in the same way as the stiffness matrix in Appendix A. Rayleigh damping is used 

instead. The equation for Rayleigh damping is [12] 

KMC βα +=  (36) 
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Where C is the damping matrix, M is the mass matrix, K is the stiffness matrix, and α and β are 

constants determined from two given damping ratios that correspond to two unequal frequencies 

of vibration. Thus damping in the FEM is not proportional to velocity but is proportional to 

mass.  

 In this thesis, one characteristic of damping is penetration depth (Q) (Appendix D). This 

is the depth an input signal travels into a material before the amplitude of the signal is reduced to  

π−e  (about 4%) of its original amplitude. Initial results indicate that a damped FEM does agree 

with numerical solutions determined by the MSDLM. In Fig. 16, the phase speed error of a 

material with Q= 25 is shown.  

 

Figure 16. Phase speed error of a FEM of a material with Q=25 and angle of orientation θ =45°. 
 
 In Fig. 17, the same material is modeled with varying grid spaces per wavelength. This 

shows good agreement with an analysis of the MSDLM in reference [8]. 
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Figure 17. Percent error in phase speed as a function of grid spaces per wavelength, where Q=25, angle of 
orientation θ =45°. 
 

Computational cost of FEM and MSDLM models 
 Accuracy is not the only issue of importance for numerical simulation. Computational 

cost is another issue considered in this study. Theoretically, given enough time and computing 

power, extremely accurate numerical models can be generated using any numerical simulation 

method. In most engineering analyses, there are limits on time or computing power available for 

a specific model. A trade-off study can be completed in order to maximize accuracy while 

minimizing cost. In most cases, there comes a point where additional improvement in accuracy is 

not beneficial enough to justify the additional computational effort. This point varies depending 

on the type of engineering problem being analyzed. 
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 One method of measuring computational cost is by estimating the number of floating 

point operations (FLOPS) per time step or iteration.  For the FEM, the MSLM and the MSDLM, 

this involves determining the number of nodes and multiplying that number by the numerical 

operations (multiplies, adds, divides and subtracts) per node.  

 Since the FEM and MSLM use the Central Difference Method, the number of FLOPS 

can be easily determined. For the FEM, the number of numerical operations can be found by 

examining eqn. (6) and eqn. (7). The number of nodes can be determined by using the desired 

accuracy to find the number of elements needed to reach this accuracy. There are 38 numerical 

operations per time step per node for the FEM.  

The discretized equations of motion for the MSLM are 
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There are 34 numerical operations per time step per node for the MSLM.  Figure 18 is a 

plot of the number of FLOPS per S-Wavelength required for 1% phase speed error for S-waves 

as v varies from 0.0 to 0.5 angle of incidence θ =45°. 
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Figure 18. Number of FLOPS per S-Wavelength required for 1% phase speed error for S-waves as v varies from 0.0 
to 0.5 angle of incidence θ =45°. 

 
Determining the FLOPS for the MSDLM is more difficult, since the integration method 

used is a fourth order Runge-Kutta. Once the number of numerical operations is determined by 

examining eqn. (36) and eqn. (37), that number must be multiplied by four. Some computational 

savings are found since the MSDLM requires a Courant number of 1.3. This larger Courant 

number leads to a larger time step, therefore, there are fewer nodes in the model. The stress-

dynamic equations for the MSDLM are 
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There are 288 numerical operations per time step per node for the MSDLM. Stress-

dynamic equations are used for the MSDLM to account for changes in volumetric forces. These 

forces must be included for the stress relaxation mechanism in the MSDLM. 
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The surface stress-dynamic equations for the MSDLM and the equations of motion for 

the FEM and the MSLM are different from the interior equations. For most engineering 

problems, the number of surface particles is minuscule compared to the number of interior 

particles and so are neglected in this study. The computational cost of a four-node FEM is 

approximately the same as that for the MSLM. The computational cost of the MSDLM is on the 

order of 5 times greater than the cost of the FEM and MSLM. 

Conclusions 
 Finite element, mass-spring lattice, and mass-spring-dashpot lattice models are powerful 

numerical simulation tools. For modeling elastic materials with Poisson’s ratio between 0.0 and 

0.2, the mass-spring lattice model has the lowest computational cost for phase speed error less 

than 1%. For modeling elastic materials with Poisson’s ratio between 0.35 and 0.45, the finite 

element model is more accurate but costs just slightly more than the mass-spring lattice model. 

For modeling materials with attenuative properties, the MSDLM is more accurate but is nearly 5 

times more expensive than the finite element model. Both the FEM and MSDLM model 

attenuative materials accurately. 
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APPENDIX A - Derivation of the indicial notation for the 4-node finite 
element model 
 The finite element method (FEM) is a widely used tool in engineering analysis [A.1]. The 

four-node element is one of the simplest, but it is still a powerful and useful tool in the solution 

of practical engineering problems. In this appendix, a plane strain isotropic medium having 

mass- proportional damping is discretized. 

 The equations of motion in the interior of a plane strain isotropic medium having mass-

proportional damping is expressed in Cartesian coordinates as 

 ( ) ( )
t
u

y
u

yx
v

x
u

t
u

∂
∂

−
∂
∂

+
∂∂

∂
++

∂
∂

+=
∂
∂

τ
ρµµλµλρ 2

22

2

2

2

2

2  (A.1) 

 ( ) ( )
t
v

x
v

yx
u

y
v

t
v

∂
∂

−
∂
∂

+
∂∂

∂
++

∂
∂

+=
∂
∂

τ
ρµµλµλρ 2

22

2

2

2

2

2  (A.2) 

where ρ is density, u and v are horizontal and vertical displacements, respectively, λ and µ are 

Lamé elastic constants and τ is a characteristic time. 

 The corresponding elemental equilibrium equation for a lumped mass element can be 

expressed in matrix form as 

 )()()(
)()(

)(
2

)()()(
)(

2
1

)(
2 eleltel

eltteltt
el

elttelteltt
el

tt
FuKuuMuuuM =+

∆
−

+
∆

+− ∆−∆+∆−∆+

τ
 (A.3) 

where M(el) is the elemental mass matrix. 
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and )(elt u  is the elemental displacement vector 
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 A schematic of a square four-node element having grid spacing h is shown in Figure A1. 

 

 

Figure A 1. Schematic of four-node element. 
 

The elemental stiffness matrix K(el) may be calculated as 
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H(el)  is the displacement interpolation matrix for a four-node square element i with sides of 

length h 

 

 H(el)  = 








4321

4321

0000
0000
hhhh

hhhh
 (A.7) 

 

where   

 





 +





 +=

h
2y1

h
2x1

4
1

1h  (A.8) 

 





 +





 −=

h
2y1

h
2x1

4
1

2h  (A.9) 

 





 −





 −=

h
2y1

h
2x1

4
1

3h  (A.10) 

 





 −





 +=

2h
2y1

h
2x1

4
1

4h  (A.11) 

 

 

B (el)  is the corresponding strain-displacement matrix corresponding to the local element degrees 

of freedom, given as 
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where   
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C (el)  is the generalized stress-strain matrix for isotropic materials subject to plane strain 

conditions, given as 
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 The elemental K matrix is 
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where  
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 k8 = µλ
4
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4
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+−   (A.30) 

 

 

Interior Element 

 Through careful examination of the matrices centered at (i,j), the global degrees of 

freedom can be identified through use of the local degrees of freedom and the matrices listed 

above.  

 

Figure A 2. Interior elemental matrices centered at position (i,j). 
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The four-node finite element discretization of eqns. (A.1) and (A. 2) yields the following 

equations written in component form at position (i,j) and time t. 
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where ∆t is the numerical time step. 
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Surface Element 

 Through examination of the matrices centered at (i,j), the global degrees of freedom can 

be identified through use of the local degrees of freedom. A two-dimensional schematic of the 

FEM discretization of a plane strain elastic solid along a traction boundary is shown in Figure A 

3. 

  

Figure A 3. Schematic of a surface element centered at (i,j). 
 

The corresponding equations of motion are 
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Where ∆t is the numerical time step, and ui,j and vi,j are the horizontal and vertical displacements, 

respectively. 
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APPENDIX B - Dispersion Relation/ High frequency assumption 
 In order to make numerical analysis of elastic wave phenomena possible, assumptions 

concerning the dispersion relation and frequency of the wave must be made. In this appendix, the 

dispersion relation for a material having mass-proportional damping is derived. 

Equilibrium equation 

 The equation of motion for a one-dimensional material having mass-proportional 

damping is 

 2
2

2
2

t
u

x
u

x
uE

∂
∂=∂

∂+
∂

∂ ρ
τ
ρ   (B.1) 

where E is the governing elastic constant, u is the displacement, ρ is the density, and τ is a 

characteristic time.  

 Consider a propagating harmonic wave having the form  

)(),( tkxix
oeUtxu ωα −+−=  (B.2) 

where Uo is the peak displacement, α is the attenuation, k is the wavenumber, and ω is the radial 

frequency. 

 Solving for the partial derivatives yields 
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 After substituting eqns. (B.3) through (B.5) into eqn. (B.1) and simplifying, the 

dispersion relation becomes 
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Separating the real and imaginary parts of eqn. (B.6) yields 
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Solving eqn. (B.8) for the wavenumber yields 
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Substituting eqn. (B.9) into eqn. (B.7) yields 
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Let 
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Multipyling eqn (B.10) by α2 and substituting eqn. (B.11) into eqn. (B.10) yields 
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Solving for α2 yields 
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Substituting eqn (B.13) into eqn. (B.7) yields 
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At high frequencies, 
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APPENDIX C - Lamb’s Solution 
 This appendix summarizes Lamb’s solution for surface displacements due to surface 

excitation [C-1]. Consider a normal point line source, having peak magnitude Q and temporal 

variation q(t), acting at the origin of a half-space (y<0) having Lamé constants λ and µ, and 

density ρ. 

For 0≤x , the horizontal and vertical surface displacements, u and v respectively, are 

 ( ) ( )
( ) ( )( ) ( ) θθ

θθθθ

θθθθ
πµµ

dxtq
sss

ssssQxstHqQu
T

L

s

s TLT

TLTT
R −

−−+−

−−−
−−−= ∫ 22224422

2222222

162

22  (C.1) 

 

( )
( ) ( )( ) ( )

( )
( ) θθ

θθθθ

θ
πµ

θθ
θθθθ

θθ
πµ

dxtq
sss

ss
PQ

dxtq
sss

sssQv

T

T

L

s TLT

LT

s

s TLT

LTT

−
−−−−

−
+

−
−−+−

−−
=

∫

∫

∞

22222222

222

22224422

22222

42

1

162

21

 (C.2) 

where sT  is the transverse wave slowness (inverse wave velocity) given by 

 
µ
ρ

=Ts  (C.3) 

sL is the longitudinal wave slowness given by 

µλ
ρ
2+

=Ls  (C.4) 

sR is the Rayleigh wave slowness given by the real root of the equation 
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where 
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P in eqn. (C.2) denotes the principal value of the integral [C-2]. A non-integrable singularity 

exists at θ= sR  and the integral must be defined as 
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where a<c<b and the non-integrable singularity exists at f(c). 

 The surface displacements for x<0 are given by replacing ( )xt ζ−  with ( )xt ζ+  in eqns. 

(C.1) and (C.2) and reversing the sign of the horizontal displacements in eqn. (C.1).  
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APPENDIX D - Penetration Depth 
Let the penetration depth Q of an attenuative material be the number of wavelengths required for 

a cyclic input signal to decrease in amplitude to π−e  where α is the attenuation and x is the 

distance. 

 πλα −− = ee Q  (D.1) 

where λ is the wavelength 

 πλα =Q  (D.2) 

 
αλ
π

=Q  (D.3) 

For a standard linear solid [D1] having a relaxation timeτ , under the frequency assumption 

 ωτ >>1 (D.4) 

where ω  is the circular frequency. Frequency-independent attenuation is 

 
cτ

α
2
1

=  (D.5) 

where c is maximum phase speed. Recall,  

 fc λ=  (D.6) 

where f is cyclic frequency. The relationship between ω  and f is 

 fπω 2=  (D.7) 

therefore 

 
π
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Substituting eqn. (D-5) into eqn. (D-3) yields 

 Qc
=

λ
τπ 2  (D.9) 

Substituting eqn. (D-6) into eqn. (D-9) yields 
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 Qf =τπ 2  (D.10) 

Substituting eqn. (D-8) into (D-10) yields 

 Q=τω  (D.11) 

Recall, 
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where k is the wavenumber. k can be rewritten as 
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The phase speed error between the exact solution and the numerical approximation can be 

written as 
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Substituting eqn. (D-12) into (D-14) yields 
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Substituting eqn. (D-13) into (D-15) yields 
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Figure D 1 is a plot of the error with respect toωτ . The error decreases as the frequency 

increases. As ωτ  increases, Q increases. Therefore a material having a high penetration depth, 

which is equivalent to a low attenuation, is modeled more accurately. 
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Figure D 1. Phase speed error as a function of .ωτ  
 
Error in attenuation 

Attenuation may be written as 
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recall that numerically 

 
max

max 2
1
cτ

α =  (D.18) 

The error between the exact and numerical attenuation can be written as 
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Substituting eqn. D-18 and C-19 into eqn. D-17 yields 
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Figure D 2 is a plot of the attenuation error as a function of ωτ . As ωτ increases, the error 

decreases. 

 

Figure D 2. Attenuation error as a function of .ωτ  
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 If a material is attenuative, its penetration depth decreases. Since penetration depth is a 

function of ωτ , the frequency decreases as well. This decrease in frequency causes errors in 

phase speed modeling.  
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